進入內容區塊

海洋委員會海洋保育署

  • :::

    調查(研究)計畫成果

    中央內容區塊
    113年度海域養殖區水質調查計畫-成果報告
    發布日期:114-01-22
    發布單位:海洋環境管理組

    本計畫於本年度11月間針對我國海域養殖區進行海域水質調查,範圍涵蓋台灣沿海與離島的主要養殖區,包括嘉義、彰化、臺南、雲林、金門、連江(馬祖)的沿海養殖區,以及澎湖和屏東的箱網養殖區,共設置23個調查點。在每個監測點,同步收集表層與底層水樣,檢測項目涵蓋基本測項(pH值、溶氧量、水溫、鹽度)、重金屬(鎘、汞、銅、鉛、鋅、鉻)、營養鹽(氨氮、硝酸鹽氮、亞硝酸鹽氮、磷酸鹽、矽酸鹽、總磷)、微生物(大腸桿菌群、糞生大腸桿菌群)、全氟及多氟化合物(PFAS,包括全氟辛烷磺酸、全氟辛酸、全氟己烷磺酸)及其他相關測項(懸浮固體、礦物性油脂、葉綠素a、生化需氧量、化學需氧量),共計46個樣本及26個測項。為提升數據精確性與全面性,本次調查亦採用多參數水質監測儀進行各監測點的垂直水質變化(包括溫度、鹽度、水深、溶氧、濁度、氧化還原電位及葉綠素a等剖面數據),並利用懸吊式電子聲波都普勒海流儀監測表層水的流速與流向。
           調查結果顯示,養殖區整體水質狀況良好,大多數的養殖區點位的基本水質參數如pH值、溶氧及鹽度呈現整體穩定的特性,彰化縣點位與其他區域間存在較大的差異。本島西南海域養殖區水質受地理條件與周邊人爲活動影響較大,而離島養殖區水質相對穩定。調查顯示,重金屬濃度未超過海域環境標準,顯示養殖區水質未受重金屬顯著污染。然而,屏東縣及澎湖縣部分養殖區鉛濃度相對較高,可能與養殖設施或船隻活動相關,其來源尚待進一步追蹤。在營養鹽方面,部分沿海區域(如彰化縣與雲林縣養殖區)的氨氮、磷酸鹽及微生物濃度超出國內外海域標準,可能與周邊人爲活動(如魚塭作業)密切相關。未來仍需結合背景調查並持續追蹤監測,以深入探討其成因。此外,表層與底層水質的變化範圍相似,但表層水質更易受到周邊環境影響,如潮汐和陸源造成水質變化幅度較大。本次調查結果亦顯示,養殖區PFAS類檢測項目均未檢出濃度,礦物性油脂及生化需氧量數值亦處於合理範圍,顯示水質未受PFAS及有機物顯著污染。
           為進一步提升水質監測的全面性與科學性,本計畫建議於各養殖區設置3至5個監測點,涵蓋養殖核心區、過渡區及參考點。其中,核心區應聚焦距離養殖設施較近的水域,特別關注沉積物與營養鹽濃度的變化;過渡區應涵蓋約1公里範圍內的緩衝區,用以評估污染物擴散及對周邊環境的影響;參考點則應選取未受養殖活動影響的開放性水域,提供基準對照數據。此外,113年度海域建議依據養殖周期特性進行季度性調查,涵蓋種苗放養期、快速生長期、成熟期及休養期等階段,以捕捉養殖區水質的時空動態變化。箱網養殖區與沿海養殖區因其分布特性與水文條件不同,監測範圍與方法亦應有所差異。箱網養殖區需重點監測距養殖設施較近的水域水質變化,而沿海養殖區則需考量沿岸潮流方向對水質的影響,適當擴大監測尺度。
           在水質管理方面,本調查建議參考國外作法,以當地養殖區背景水質為基準,制定適當的海域養殖區排放限值,藉此在保護海域生態環境的同時,確保養殖活動的可持續發展。此外,因食品安全問題日益受到關注,建議將國內食品重金屬標準中的無機砷及甲基汞納入養殖區水質檢測項目,確保養殖產品的食品安全性,並降低重金屬污染對人體健康的潛在風險。
           本計畫於本年度11月間針對我國海域養殖區進行海域水質調查,範圍涵蓋台灣沿海與離島的主要養殖區,包括嘉義、彰化、臺南、雲林、金門、連江(馬祖)的沿海養殖區,以及澎湖和屏東的箱網養殖區,共設置23個調查點。在每個監測點,同步收集表層與底層水樣,檢測項目涵蓋基本測項(pH值、溶氧量、水溫、鹽度)、重金屬(鎘、汞、銅、鉛、鋅、鉻)、營養鹽(氨氮、硝酸鹽氮、亞硝酸鹽氮、磷酸鹽、矽酸鹽、總磷)、微生物(大腸桿菌群、糞生大腸桿菌群)、全氟及多氟化合物(PFAS,包括全氟辛烷磺酸、全氟辛酸、全氟己烷磺酸)及其他相關測項(懸浮固體、礦物性油脂、葉綠素a、生化需氧量、化學需氧量),共計46個樣本及26個測項。為提升數據精確性與全面性,本次調查亦採用多參數水質監測儀進行各監測點的垂直水質變化(包括溫度、鹽度、水深、溶氧、濁度、氧化還原電位及葉綠素a等剖面數據),並利用懸吊式電子聲波都普勒海流儀監測表層水的流速與流向。
            調查結果顯示,養殖區整體水質狀況良好,大多數的養殖區點位的基本水質參數如pH值、溶氧及鹽度呈現整體穩定的特性,彰化縣點位與其他區域間存在較大的差異。本島西南海域養殖區水質受地理條件與周邊人爲活動影響較大,而離島養殖區水質相對穩定。調查顯示,重金屬濃度未超過海域環境標準,顯示養殖區水質未受重金屬顯著污染。然而,屏東縣及澎湖縣部分養殖區鉛濃度相對較高,可能與養殖設施或船隻活動相關,其來源尚待進一步追蹤。在營養鹽方面,部分沿海區域(如彰化縣與雲林縣養殖區)的氨氮、磷酸鹽及微生物濃度超出國內外海域標準,可能與周邊人爲活動(如魚塭作業)密切相關。未來仍需結合背景調查並持續追蹤監測,以深入探討其成因。此外,表層與底層水質的變化範圍相似,但表層水質更易受到周邊環境影響,如潮汐和陸源造成水質變化幅度較大。本次調查結果亦顯示,養殖區PFAS類檢測項目均未檢出濃度,礦物性油脂及生化需氧量數值亦處於合理範圍,顯示水質未受PFAS及有機物顯著污染。
           為進一步提升水質監測的全面性與科學性,本計畫建議於各養殖區設置3至5個監測點,涵蓋養殖核心區、過渡區及參考點。其中,核心區應聚焦距離養殖設施較近的水域,特別關注沉積物與營養鹽濃度的變化;過渡區應涵蓋約1公里範圍內的緩衝區,用以評估污染物擴散及對周邊環境的影響;參考點則應選取未受養殖活動影響的開放性水域,提供基準對照數據。此外,113年度海域建議依據養殖周期特性進行季度性調查,涵蓋種苗放養期、快速生長期、成熟期及休養期等階段,以捕捉養殖區水質的時空動態變化。箱網養殖區與沿海養殖區因其分布特性與水文條件不同,監測範圍與方法亦應有所差異。箱網養殖區需重點監測距養殖設施較近的水域水質變化,而沿海養殖區則需考量沿岸潮流方向對水質的影響,適當擴大監測尺度。
           在水質管理方面,本調查建議參考國外作法,以當地養殖區背景水質為基準,制定適當的海域養殖區排放限值,藉此在保護海域生態環境的同時,確保養殖活動的可持續發展。此外,因食品安全問題日益受到關注,建議將國內食品重金屬標準中的無機砷及甲基汞納入養殖區水質檢測項目,確保養殖產品的食品安全性,並降低重金屬污染對人體健康的潛在風險。
    Abstract
    In November of this year, the present project conducted a water quality baseline survey in mariculture zones across Taiwan’s ocean areas. The present study encompassed main mariculture regions along the coasts of Chiayi, Changhua, Tainan, Yunlin, Kinmen, and Lienchiang (Matsu), as well as cage culture areas in Penghu and Pingtung. A total of 23 survey sites were established. At each monitoring site, surface and bottom water samples were collected to measure 26 parameters across 46 samples. The monitoring items included basic parameters (pH, dissolved oxygen, water temperature, salinity), heavy metals (cadmium, mercury, copper, lead, zinc, chromium), nutrients (ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, phosphate, silicate, total phosphorus), microbiological indicators (coliform groups and fecal coliforms), per- and polyfluoroalkyl substances (PFAS, including PFOS, PFOA, PFHxS), and other relevant parameters (suspended solids, mineral oils, chlorophyll-a, biochemical oxygen demand, chemical oxygen demand). To enhance data accuracy and comprehensiveness, a multiparameter water quality monitoring device was employed to assess vertical water quality variations (e.g., temperature, salinity, depth, dissolved oxygen, turbidity, redox potential, chlorophyll), and an acoustic Doppler current profiler was used to monitor surface water flow velocity and direction.
    The results revealed that the overall water quality in mariculture zones was satisfactory, with basic parameters such as pH, dissolved oxygen, and salinity remaining stable across most sites. However, noticeable differences were observed between the Changhua County sites and other regions. The mariculture zones in the southwestern coastal waters were more influenced by geographical conditions and anthropogenic activities, while the water quality in mariculture zones of outlying islands was relatively stable. Heavy metal concentrations were below Marine Environment Classification and Marine Environment Quality Standards in Taiwan, indicating no significant contamination in mariculture zones. Nonetheless, lead concentrations in certain areas of Pingtung and Penghu were higher, likely related to mariculture facilities or vessel activities, warranting further investigation. For nutrients, elevated levels of ammonia nitrogen, phosphate, and microbial indicators were observed in certain coastal areas, especially in Changhua and Yunlin mariculture zones, likely due to intensive fish farming operations and related human activities nearby the sites. Continuous monitoring and further background investigations are needed to explore the causes. Variations between surface and bottom water quality were generally consistent; however, surface water was more affected by surrounding environmental factors, such as tidal and land-based inputs, leading to greater fluctuations. PFAS concentrations were below detectable levels, while mineral oil and biochemical oxygen demand values remained within reasonable ranges, indicating no significant contamination from PFAS or organic pollutants in the mariculture zones.
    To improve the comprehensiveness and scientific rigor of water quality monitoring, it is recommended to establish 3–5 monitoring points in each mariculture zone, covering core zones, transition zones, and reference points. Core zones should focus on areas close to mariculture facilities, with special attention to sediment and nutrient concentrations. Transition zones should include buffer zones approximately 1 km from the core to assess pollutant dispersion and environmental impacts. Reference points should be selected in open waters unaffected by mariculture activities to provide baseline data. Quarterly monitoring aligned with mariculture cycles—such as the seedling, rapid growth, maturation, and fallowing phases—is suggested to capture temporal and spatial variations in water quality. Considering the differences in distribution and hydrological conditions, monitoring strategies for cage mariculture zones and coastal mariculture zones should differ. For cage mariculture zones, emphasis should be placed on water quality changes near the facilities, while coastal mariculture zones should account for the influence of coastal currents, necessitating an expanded monitoring scale.
    For water quality management, it is recommended to adopt international practices by setting discharge limits for mariculture zones based on local baseline water quality, ensuring sustainable mariculture development while protecting the marine ecosystem. Furthermore, given the growing focus on food safety, it is suggested to include inorganic arsenic and methylmercury—regulated under domestic food safety standards—as part of water quality monitoring in mariculture zones. This would ensure the safety of mariculture products and reduce potential health risks from heavy metal contamination.
     
     
     

    相關附件
    • 成果報告書_113年海域養殖區水質調查計畫
    • 瀏覽人次: 123人
    • 更新日期: 114-01-23
    設定:
    文字大小設定:
    範例:
    海洋保育署